EE105 Microelectronic Devices and Circuits: P-N Junctions and Semiconductor Fabrication

Prof. Ming C. Wu
wu@eecs.berkeley.edu
511 Sutardja Dai Hall (SDH)

p-n Junction

- p-type semiconductor in contact with n-type
- Basic building blocks of semiconductor devices
- Diodes,
- Bipolar junction transistors (BJT),
- Metal-oxide-semiconductor field effect transistors (MOSFET)

2
BSAC

p-n Junction

- When p- and n-type semiconductors are "joined"
- Holes near junction diffuse to n -side
- Electrons near junction diffuse to p-side
- "Depletion region" formed near junction
- No electrons, no holes
- A "built-in" potential is formed to oppose further movement of electrons and holes

Simplified Analysis of p-n Junction

Gauss Law:

$$
\oint \vec{E} \cdot \overrightarrow{d A}=\frac{Q}{\epsilon_{s}}
$$

Electrical potential:

$$
V=-\int_{-\infty}^{x} E\left(x^{\prime}\right) d x^{\prime}
$$

Built-in potential:

$$
V_{0}=V_{T} \cdot \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)
$$

Depletion width:

$$
W=\sqrt{\frac{2 \epsilon_{S}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right) V_{0}}
$$

Built-in Potential

Built-in potential:

$$
V_{0}=V_{T} \cdot \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)
$$

$V_{T}=\frac{k_{B} T}{q}:$ thermal voltage $=26 \mathrm{mV}$ at room temperature
$N_{A}:$ p-doping (Acceptor)
N_{D} : n-doping (Donor)
n_{i} : intrinsic carrier concentration
$n_{i}=1.5 \times 10^{10} \mathrm{~cm}^{-3}$ for Si
Alternative form:

$$
V_{0}=60 \mathrm{mV} \cdot \log \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)
$$

Example:

$$
\begin{aligned}
& N_{A}=1.5 \times 10^{17}, n_{D}=1.5 \times 10^{18} \mathrm{~cm}^{-3} \\
& V_{0}=60 \mathrm{mV} \cdot \log \left(10^{15}\right)=900 \mathrm{mV}
\end{aligned}
$$

Carrier Concentration in p-n Junction

At equilibrium:
$n \times p=n_{i}^{2}$

Depletion Width Under Bias

Open circuit ($\mathrm{V}=0$)
Equilibrium

Reverse Bias ($\mathrm{V}<0$)

- Larger barrier
- Wider depletion

Forward Bias ($\mathrm{V}>0$)

- Smaller barrier
- Narrower depletion

$$
W=\sqrt{\frac{2 \epsilon_{s}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)\left(V_{0}-V\right)}
$$

Extra Holes in N Side Under Forward Bias

Excess holes in n -doped side:

$$
p_{n, e d g e}=p_{n 0} \cdot\left(e^{V / V_{T}}-1\right)
$$

Holes Recombine with Electrons on N Side

Excess holes in n -doped side:

$$
p_{n, \text { edge }}=p_{n 0} \cdot\left(e^{V / V_{T}}-1\right)
$$

Excess holes recombines within diffusion length, L_{p} :

$$
\frac{d p_{n}(x)}{d x}=\frac{p_{n, e d g e}}{L_{p}}
$$

Diffusion Currents Under Forward Bias

Excess holes in n -doped side:

$$
p_{n, e d g e}=p_{n 0} \cdot\left(e^{V / V_{T}}-1\right)
$$

Excess holes recombines within diffusion length, L_{p} :

$$
\frac{d p_{n}(x)}{d x}=\frac{p_{n, e d g e}}{L_{p}}
$$

Diffusion current:

$$
\begin{aligned}
& J_{p}=-q D_{p} \frac{d p_{n}(x)}{d x} \\
& =\frac{q D_{p}}{L_{p}} p_{n 0} \cdot\left(e^{V / V_{T}}-1\right)
\end{aligned}
$$

Total Currents Under Forward Bias

Hole Diffusion current on N -side

$$
J_{p}=\frac{q D_{p}}{L_{p}} p_{n 0} \cdot\left(e^{V / V_{T}}-1\right)
$$

Similarly,
Electron Diffusion current on P-side

$$
J_{n}=\frac{q D_{n}}{L_{n}} n_{p 0} \cdot\left(e^{V / V_{T}}-1\right)
$$

Total current

$$
I=\operatorname{Area} \cdot\left(J_{p}+J_{n}\right) \propto\left(e^{V / V_{T}}-1\right)
$$

I-V Curve

$$
I=I_{S}\left(e^{V / V_{T}}-1\right)
$$

where

$$
I_{S}=A q n_{i}^{2}\left(\frac{D_{p}}{L_{p} N_{D}}+\frac{D_{n}}{L_{n} N_{A}}\right)
$$

Capacitance in p-n Junction: Depletion Capacitance

Parallel plate capacitance:

$$
C_{j}=\frac{\epsilon_{s} A}{W}
$$

Plate separation, W, is voltage dependent:

$$
W=\sqrt{\frac{2 \epsilon_{s}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)\left(V_{0}+\left|V_{R}\right|\right)}
$$

Variable capacitance:

$$
C_{j}(V)=\frac{C_{j 0}}{\sqrt{1+\frac{\left|V_{R}\right|}{V_{0}}}}
$$

Summary of p-n Junction

Built-in potential : $V_{0}=V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)$

$$
\begin{aligned}
& \text { I-V curve : } \quad I=I_{S}\left(e^{V / V_{T}}-1\right) \\
& \text { Capacitance : } C_{j}=\frac{C_{j 0}}{\sqrt{1+\frac{\left|V_{R}\right|}{V_{0}}}}
\end{aligned}
$$

$$
\text { Depletion Width: } W=\sqrt{\frac{2 \varepsilon_{S}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)\left(V_{0}-V\right)}
$$

Basic Semiconductor Fabrication

Economy of Scale

300 mm and 450 mm Si Wafers

http://wccftech.com/foundries-tsmc-companies-shift-300mm-wafers/

- Current: 300mm wafers
- Next gen: 450mm wafers
- 200mm wafers are still workhorse, particularly for loT
- Economy of scale
- Full CMOS has 60+ photomasks, and yet chip cost almost nothing
- \$1K for 200mm
- \$ /mm²
- \$10K for 300 mm
- \$ /mm ${ }^{2}$

Basic Semiconductor Fabrication Process

Learn more in EE 143
(0)

(1)

SiO_{2}
$\mathrm{P}-\mathrm{Si}$
SiO_{2}

(2)

(3)

$\mathrm{SiO}_{2} \quad$	SiO_{2}		
			$\mathrm{P}-\mathrm{Si}$

State of the Art Lithography Machine (EUV: Extreme Ultra Violet)

State of the Art Lithography Machine (EUV: Extreme Ultra Violet)

$\frac{11}{C 11 i}$

Microfabrication (cont'd)

(4)

Arsenic implantation

(5)

(6)

Microfabrication (cont'd)

(7)

(8)

Microfabrication (cont'd)

(9)

Modern CMOS IC Cross Section

Intel 14nm Broadwell chip, side-on, showing all 13 layers

Appendix

- Rigorous derivation of pn junction potential
- Rigorous derivation of junction capacitance

Rigorous Derivation of pn Junction Potential

$E(x)= \begin{cases}\frac{-q N_{A}\left(x+x_{p}\right)}{\varepsilon_{S}}, & -x_{p}<x<0 \\ \frac{q N_{D}\left(x-x_{n}\right)}{\varepsilon_{S}}, & 0<x<x_{n}\end{cases}$
$V(x)=-\int_{-x_{p}}^{x} E\left(x^{\prime}\right) d x^{\prime}$
(1) for $-x_{p}<x<0: V(x)=-\int_{-x_{p}}^{x} E\left(x^{\prime}\right) d x^{\prime}=\int_{-x_{p}}^{x} \frac{q N_{A}\left(x^{\prime}+x_{p}\right)}{\varepsilon_{S}} d x^{\prime}=\left.\frac{q N_{A}}{2 \varepsilon_{S}}\left(x^{\prime}+x_{p}\right)^{2}\right|_{x^{\prime}=-x_{p}} ^{x^{\prime}=x}=\frac{q N_{A}}{2 \varepsilon_{S}}\left(x+x_{p}\right)^{2}$
(2) for $0<x<x_{n}$: Because $E(x)$ has different expression for $x<0$ and $x>0$, the integration should be performed in two separate ranges, first from $-x_{p}$ to 0 , and then from 0 to x. We can use $V(x=0)$ from the above equation for the first intgration. Therefore,

$$
\begin{aligned}
& V(x)=\frac{q N_{A}}{2 \varepsilon_{S}} x_{p}^{2}-\int_{0}^{x} \frac{q N_{D}\left(x^{\prime}-x_{n}\right)}{\varepsilon_{S}} d x^{\prime}=\frac{q N_{A}}{2 \varepsilon_{S}} x_{p}^{2}-\left.\frac{q N_{D}\left(x^{\prime}-x_{n}\right)^{2}}{2 \varepsilon_{S}}\right|_{0} ^{x} \\
& =\frac{q N_{A}}{2 \varepsilon_{S}} x_{p}^{2}-\left(\frac{q N_{D}\left(x-x_{n}\right)^{2}}{2 \varepsilon_{S}}-\frac{q N_{D} x_{n}^{2}}{2 \varepsilon_{S}}\right)=\frac{q N_{A}}{2 \varepsilon_{S}} x_{p}^{2}+\frac{q N_{D} x_{n}^{2}}{2 \varepsilon_{S}}-\frac{q N_{D}\left(x-x_{n}\right)^{2}}{2 \varepsilon_{S}}
\end{aligned}
$$

Built-in potential :

$$
V_{0}=V\left(x_{n}\right)=\frac{q}{2 \varepsilon_{S}}\left(N_{A} x_{p}^{2}+N_{D} x_{n}^{2}\right)
$$

Rigorous Derivation of Junction Capacitance

Total charge Ain depletion width at $V=-V_{R}$
$Q_{J}=A q N_{D} x_{n}=A q N_{D} \frac{N_{A}}{N_{A}+N_{D}} W$
$W=\sqrt{\frac{2 e_{S}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)\left(V_{0}+V_{R}\right)}$
As bias voltage change, the amount of charge in the junction change. This is a "nonlinear" capacitor.
The capacitance value is
$C_{j}=\frac{d Q_{J}}{d V_{R}}=A q \frac{N_{D} N_{A}}{N_{A}+N_{D}} \sqrt{\frac{2 e_{S}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)} \frac{d}{d V} \sqrt{\left(V_{0}+V_{R}\right)}$
$C_{V_{R}} C_{j}=A \sqrt{\frac{\varepsilon_{S} q}{2}\left(\frac{N_{A} N_{D}}{N_{A}+N_{D}}\right)} \frac{1}{\sqrt{\left(V_{0}+V_{R}\right)}} \quad$ Note: $\quad C_{j}=\frac{\varepsilon_{S} A}{W}$

$$
\text { At zero bias, } V_{R}=0
$$

In comparision, for a "linear" (normal) capacitor:
$C=\frac{Q}{V}$ is a constant
$C_{j 0}=A \sqrt{\frac{\varepsilon_{s} q}{2}\left(\frac{N_{A} N_{D}}{N_{A}+N_{D}}\right)} \frac{1}{\sqrt{V_{0}}}$
Therefore at $V=-V_{R}$,

$$
C_{j}=\frac{C_{j 0}}{\sqrt{1+\frac{V_{R}}{V_{0}}}}
$$

This is a variable capacitor, controllable by voltage

