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p-n Junction

• p-type semiconductor in contact with n-type

• Basic building blocks of semiconductor devices
– Diodes, 
– Bipolar junction transistors (BJT), 
– Metal-oxide-semiconductor field effect transistors (MOSFET)
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p-n Junction

• When p- and n-type 
semiconductors are “joined”
– Holes near junction diffuse 

to n-side
– Electrons near junction 

diffuse to p-side

• “Depletion region” formed near 
junction
– No electrons, no holes

• A “built-in” potential is formed 
to oppose further movement of 
electrons and holes
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Simplified Analysis of p-n Junction
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Built-in Potential

Emax

Electric Field

Built-in potential:

!" = !$ % &'
()(*
'+,

!$ = -.$
/ : thermal voltage = 26 mV at 

room temperature
() : p-doping (Acceptor)
(* : n-doping (Donor)
'+ : intrinsic carrier concentration
'+ = 1.5×105" 6789 for Si

Alternative form:

!" = 607! % &;< ()(*
'+,

Example: 
() = 1.5×105=, '* = 1.5×105> cm-3

!" = 607! % &;< 105? = 9007!
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Carrier Concentration in p-n Junction

At equilibrium:
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Depletion Width Under Bias

Open circuit 
(V = 0)

Equilibrium

Reverse Bias
(V < 0)

• Larger barrier
• Wider depletion

Forward Bias
(V > 0)

• Smaller barrier
• Narrower depletion
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Extra Holes in N Side Under Forward Bias

Excess holes in n-doped side:
!",$%&$ = !"( ) $ ⁄+ +, − .
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Holes Recombine with Electrons on N Side

Excess holes in n-doped side:
!",$%&$ = !"( ) $ ⁄+ +, − .

Excess holes recombines within 
diffusion length, /!:
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Diffusion Currents Under Forward Bias

Excess holes in n-doped side:
!",$%&$ = !"( ) $ ⁄+ +, − .

Excess holes recombines within 
diffusion length, /!:
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Diffusion current:
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Total Currents Under Forward Bias

Hole Diffusion current on N-side

!" =
$%"
&"

"'( ) * ⁄, ,- − /

Similarly,
Electron Diffusion current on P-side

!' =
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Total current
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I-V Curve

I = IS e
V /VT −1( )   

where  
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Capacitance in p-n Junction:
Depletion Capacitance

Parallel plate capacitance:
!" =

$%&
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Plate separation, W, is voltage 
dependent:
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Variable capacitance:
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Summary of p-n Junction

		

Built-in	potential	:		V0 =VT ln
NAND
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I-V	curve	:															I = IS e
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Capacitance	:		C j =
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Basic Semiconductor Fabrication
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Economy of Scale

• Current: 300mm wafers

• Next gen: 450mm wafers

• 200mm wafers are still 
workhorse, particularly for IoT

• Economy of scale
– Full CMOS has 60+ 

photomasks, and yet chip 
cost almost nothing

– $1K for 200mm 
• $    /mm2

– $10K for 300mm
• $    /mm2

300mm and 450mm Si Wafers

http://wccftech.com/foundries-tsmc-companies-shift-
300mm-wafers/
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Basic Semiconductor Fabrication Process
Learn more in EE 143
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State of the Art Lithography Machine
(EUV: Extreme Ultra Violet)
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State of the Art Lithography Machine
(EUV: Extreme Ultra Violet)
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Microfabrication (cont’d)
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Microfabrication (cont’d)
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Microfabrication (cont’d)
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Modern CMOS IC Cross Section

Intel 14nm Broadwell chip, side-on, showing all 13 layers
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Appendix

• Rigorous derivation of pn junction potential 

• Rigorous derivation of junction capacitance
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Rigorous Derivation of pn Junction Potential

E(x) =

−qNA (x + xp )
εS

, −xp < x < 0
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V (x) = − E(x ')dx '
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x

∫
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(2) for  0 < x < xn :  Because E(x) has different expression for x < 0 and x > 0,  the integration should 

be performed in two separate ranges, first from − xp  to 0,  and then from 0 to x. We can use V (x = 0) 
from the above equation for the first intgration. Therefore,

V (x) = qNA

2εS
xp

2 −
qND (x '− xn )

εS
dx '

0

x

∫ =
qNA

2εS
xp

2 −
qND (x '− xn )2

2εS 0

x

=
qNA

2εS
xp

2 −
qND (x − xn )2

2εS
−
qNDxn

2

2εS

'

(
)

*

+
,=

qNA

2εS
xp

2 +
qNDxn

2

2εS
−
qND (x − xn )2

2εS

Built-in potential :       V0 =V (x n ) = q
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Rigorous Derivation of 
Junction Capacitance

Total charge Ain depletion width at V = -VR
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NA

NA + ND

W

W =
2eS
q

1
NA

+
1
ND

!

"
#

$

%
& V0 +VR( )

As bias voltage change, the amount of charge in 
the junction change. This is a "nonlinear" capacitor. 
The capacitance value is 
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dQJ
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= Aq NDNA
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    Note:      Cj =
εSA
W

At zero bias, VR = 0

Cj0 = A
εSq
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Therefore at V = -VR  ,       Cj =
Cj0

1+VR
V0

This is a variable capacitor, controllable by voltage !

In comparision, for a "linear" 
(normal) capacitor:

C = Q
V

 is a constant


